A2E ACCESS TO ENERGY INSTITUTE

Productive-Use Methodology for Evaluations

OCTOBER 13, 2020

A2EI Webinar

A2EI

Access to Energy Institute

Non-profit, collaborative R&D platform for the off-grid energy industry in Africa

Elliot Avila Research Director at A2EI Founder at Imara Tech

Supported by

PRODUCTIVE USE REPORT

EVALUATION OF SOLAR POWERED AGRICULTURAL TECHNOLOGIES FOR PRODUCTIVE-USE APPLICATIONS: A MODELING APPROACH

A2E

Motivation

Which productive-use technologies will scale? Which ones will not?

Key Premises for Paper

1. The value proposition of a productive-use technology is the income that it generates.

2. We can estimate income generation of a productiveuse technology with a business model.

3. We can estimate the market potential for productiveuse products by evaluating their business models.

10 Products were selected for evaluation

Coffee Peeler

Peanut Sheller

Oil Presses

Flour Mill

Rice Huller

Electric Dryer

Fruit Juice

Blender

Sugarcane Juicer

Maize Sheller

Spice Mills

A business model was constructed for each technology

Original Scenario What were things like before?

New Business Scenario

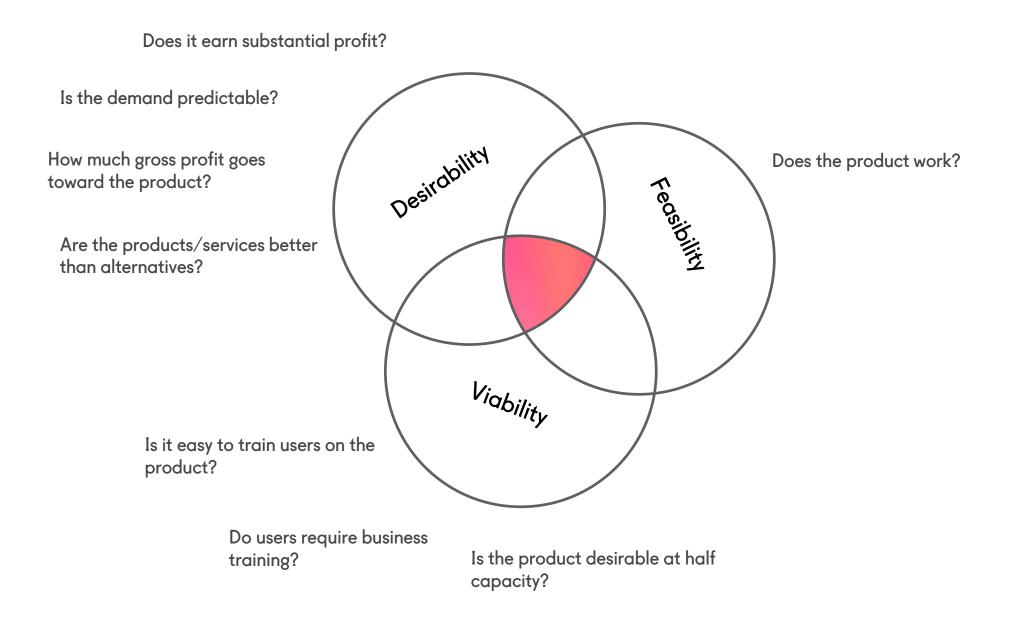
What are things like now?

Technology Assumptions

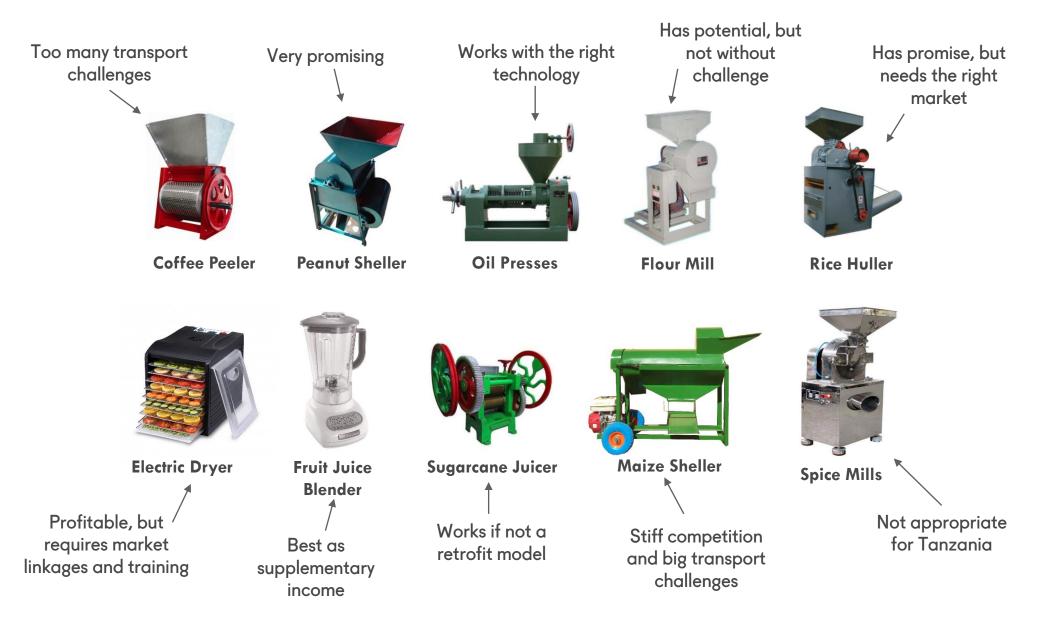
What product is used and what are the specifications?

Business Assumptions

What is the day-to-day operation of the business?



TECHNOLOGY ASSUMPTIONS


Specification	Unit	Value
CAPEX Costs	\$	\$2000
Power	kW	2.2
Throughput	kg/h	28

BUSINESS ASSUMPTIONS		
Specification	Unit	Value
Price per Seed	\$/kg	\$0.065
Daily Usage	h/day	8
Seasonal Utilization	%	50%

The business models were evaluated

Results were analyzed and conclusions were made

A Few Key Insights

#1 Efficiency and power are just pieces of the picture.

- Considerations such as transport and service charges can be more important than technical specifications
- Ultimately *cost-efficiency* is more important than *energy efficiency*

Manual Coffee Pulping 75W required

#2 Earnings per acre is a shortcut to understanding scalability.

Low-Value Services

Pulping Coffee ~\$3/acre

Shelling Maize

- Need to serve large area to be profitable
- Competition risks
- Transport is an issue

High-Value Services

Pressing Oil ~\$23/acre

Shelling Peanuts ~\$26/acre

- Can be successful serving small area with little supply
- Less susceptible to competition
- Incentives to overcome transport barriers

#3 For food businesses, the population size is key.

Milling

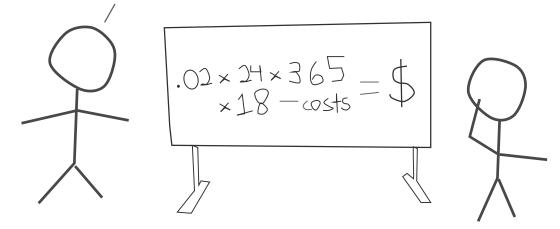
- Applicable when processing material only for consumption (e.g. milling, hulling, spice grinding)
- These businesses perform best in highly populated markets ٠
- Pain point for these technologies is finding the right market ٠

#4 Just because it can happen off-grid, doesn't mean that it should.

- If the market for an end-product (e.g. ground spices) is on-grid, it's often more efficient to simply process it on-grid
- Transport or quality could result in exceptions to the above statement
- Value addition: there needs to be a good reason why it should happen in rural areas or off-grid

Applying This Methodology: Why and How

Why use a model?


- Forces transparency in discussion
- Can be made simple or complex as required
- Easy to modify: responsive

A contentious question: what is the cost of solar energy?

How Investors & Entrepreneurs Should Apply This Tool

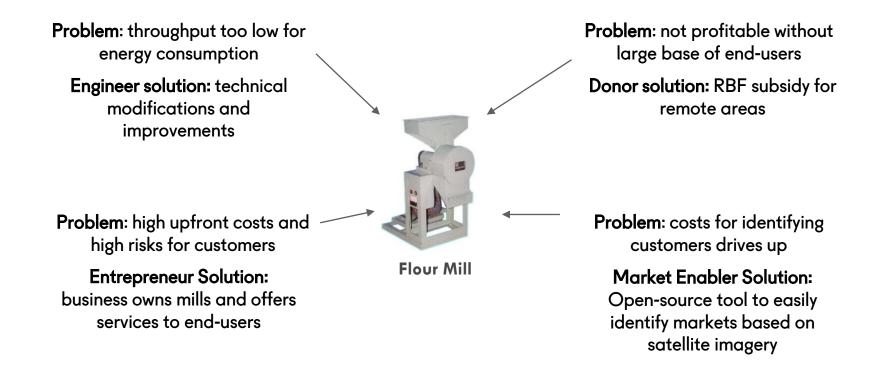
So if we run the machine 24 hours each day, the business will reach profitability before the panels need to be replaced!

- Bring a model to the table for discussion
- Talk through each point: these are the levers to work with
- Play with the model and change some numbers
- Focus on what seems unbelievable or what *isn't* working
- The entrepreneur's next move should address the weak points

How Researchers Should Apply This Tool to Amplify Results

VS

Lifetime cost Comparison of diesel mills and G2 mill


٠

Description	Diesei Mili	G2 MIII
Proc	luction	
CAPEX (USD)	1,000	2,50
Life (yrs.)	10	10
Dally production (kg)	300	140
Throughput (kg/hr.)	150	32.7
Average operating hours per day (hrs.)	2	4.3
Annual production (kg p.a.)	109,500	51,100
Availability/seasonality factor (%)	85%	809
Annual production (kg)	93,075	40,880
PowerRe	equirement	
Size of motor (KW)	20	1.3
Loading factor (%) - 80% for diesel	16	1.3
Ret	venue	
Price charged for milling (USD/kg)	0.045	0.04
Annual revenue (USD)	4,188	1,840
Lifetime revenue (USD)	41,884	18,39
Exp	enses	
Capex	1,000	2,500
Cost of diesel (USD p.a.)	2,555	
Repair and maintenance (USD p.a.)	300	98
Labour costs (USD p.a.)	780	78
Battery replacement (USD p.a.)		25
Rent (USD p.a.)	-	
Total expenses (USD p.a.)	3,635	1,128
	nmary	
Annual profit (USD)	553	71
Payback period (years)	1.8	3.

After months of rigorous testing behind closed doors, we got some nice bullet points to include in the annual report.

- Include a model that represents typical use cases(s) in publications
 - Ex: After a pilot, model one of the users in the pilot
 - Can be the model of an actual user, or can be a representation of a user
 - Does not need to be the main body

How All of us Can Apply This Tool to Innovate

- Focus on what isn't working and build a problem framing statement around that point
- Start the ideation and design process from the business model
 - How might we... improve any input used in the business model?

What's Next?

- Updates and Annexes
- One-on-ones with stakeholders to gain insights to how the sector is applying this kind of methodology
- Product development: Mill, Peanut Sheller, Oil Press